Fixed Size Sliding Window Pattern
Overview
The Fixed Size Sliding Window pattern is a powerful algorithmic technique that involves maintaining a window of fixed size k while traversing through an array or string. This window "slides" through the data structure one element at a time, making it highly efficient for solving various problems that require analyzing subarrays or substrings of a specific length.
When to Use This Pattern
- Subarray Operations: Finding subarrays of fixed length that meet certain criteria
- String Pattern Matching: Locating fixed-length patterns or anagrams
- Array Averages: Computing averages of fixed-size subarrays
- Maximum/Minimum Values: Finding extreme values in fixed-size windows
- Binary Substrings: Analyzing fixed-length binary patterns
- Distinct Elements: Counting unique elements in fixed-size windows
- Sum Calculations: Computing sums of consecutive elements
- Statistical Metrics: Calculating medians or other statistics in windows
- Pattern Recognition: Identifying repeated patterns of fixed length
- Data Streaming: Processing fixed-size chunks of streaming data
Key Characteristics
- Fixed Window Size: Window length remains constant throughout traversal
- Linear Time Complexity: Typically achieves O(n) time complexity
- Constant Space: Usually requires O(1) or O(k) extra space
- Sequential Processing: Elements are processed in order
- Window Sliding: One element added, one removed per slide
Real-World Applications
- Moving Averages: Stock price analysis
- Network Monitoring: Fixed-time traffic analysis
- Image Processing: Pixel window operations
- Signal Processing: Fixed-width filters
- Data Analytics: Time-series analysis
Why Fixed Size Sliding Window Matters
- Efficiency: Eliminates redundant computations
- Optimization: Perfect for fixed-size subarray problems
- Simplicity: Easy to implement and understand
- Performance: Maintains consistent time complexity
Let's explore how the fixed size sliding window technique works in different programming languages and common problem patterns.
Implementation Examples
- C++
- Java
- Python
// Maximum Average Subarray I
class Solution {
public:
double findMaxAverage(vector<int>& nums, int k) {
double sum = 0;
// Calculate sum of first window
for (int i = 0; i < k; i++) {
sum += nums[i];
}
double maxSum = sum;
// Slide window and update maxSum
for (int i = k; i < nums.size(); i++) {
sum = sum + nums[i] - nums[i - k];
maxSum = max(maxSum, sum);
}
return maxSum / k;
}
};
// Find All Anagrams
class Solution {
public:
vector<int> findAnagrams(string s, string p) {
if (s.length() < p.length()) return {};
vector<int> result;
vector<int> pCount(26, 0);
vector<int> window(26, 0);
// Count characters in pattern
for (char c : p) {
pCount[c - 'a']++;
}
// Initialize first window
for (int i = 0; i < p.length(); i++) {
window[s[i] - 'a']++;
}
if (window == pCount) result.push_back(0);
// Slide window
for (int i = p.length(); i < s.length(); i++) {
window[s[i - p.length()] - 'a']--;
window[s[i] - 'a']++;
if (window == pCount) {
result.push_back(i - p.length() + 1);
}
}
return result;
}
};
// Maximum Average Subarray I
class Solution {
public double findMaxAverage(int[] nums, int k) {
double sum = 0;
// Calculate sum of first window
for (int i = 0; i < k; i++) {
sum += nums[i];
}
double maxSum = sum;
// Slide window and update maxSum
for (int i = k; i < nums.length; i++) {
sum = sum + nums[i] - nums[i - k];
maxSum = Math.max(maxSum, sum);
}
return maxSum / k;
}
}
// Find All Anagrams
class Solution {
public List<Integer> findAnagrams(String s, String p) {
if (s.length() < p.length()) return new ArrayList<>();
List<Integer> result = new ArrayList<>();
int[] pCount = new int[26];
int[] window = new int[26];
// Count characters in pattern
for (char c : p.toCharArray()) {
pCount[c - 'a']++;
}
// Initialize first window
for (int i = 0; i < p.length(); i++) {
window[s.charAt(i) - 'a']++;
}
if (Arrays.equals(window, pCount)) result.add(0);
// Slide window
for (int i = p.length(); i < s.length(); i++) {
window[s.charAt(i - p.length()) - 'a']--;
window[s.charAt(i) - 'a']++;
if (Arrays.equals(window, pCount)) {
result.add(i - p.length() + 1);
}
}
return result;
}
}
# Maximum Average Subarray I
class Solution:
def findMaxAverage(self, nums: List[int], k: int) -> float:
# Calculate sum of first window
curr_sum = sum(nums[:k])
max_sum = curr_sum
# Slide window and update max_sum
for i in range(k, len(nums)):
curr_sum = curr_sum + nums[i] - nums[i - k]
max_sum = max(max_sum, curr_sum)
return max_sum / k
# Find All Anagrams
class Solution:
def findAnagrams(self, s: str, p: str) -> List[int]:
if len(s) < len(p):
return []
result = []
p_count = [0] * 26
window = [0] * 26
# Count characters in pattern
for c in p:
p_count[ord(c) - ord('a')] += 1
# Initialize first window
for i in range(len(p)):
window[ord(s[i]) - ord('a')] += 1
if window == p_count:
result.append(0)
# Slide window
for i in range(len(p), len(s)):
window[ord(s[i - len(p)]) - ord('a')] -= 1
window[ord(s[i]) - ord('a')] += 1
if window == p_count:
result.append(i - len(p) + 1)
return result
Visual Demonstration
This animation demonstrates how a fixed-size sliding window operates on an array. Notice how the window (highlighted in blue) maintains its constant size of k=3 elements while sliding through the array. This visualization helps understand how the window processes consecutive subarrays of fixed length.
Common Patterns and Their Complexities
Pattern | Description | Time Complexity | Space Complexity |
---|---|---|---|
Sum/Average | Calculate sum/average of k elements | O(n) | O(1) |
Pattern Match | Find fixed-length patterns | O(n) | O(k) |
Distinct Elements | Count unique elements in k-window | O(n) | O(k) |
Max/Min Value | Find extreme values in k-window | O(n) | O(1) |
Median Finding | Find median in k-window | O(n log k) | O(k) |
Practice Problems
Easy Level
-
- Find maximum average value in subarray of size k
- Time: O(n), Space: O(1)
-
Substrings of Size Three with Distinct Characters
- Count substrings of size 3 with unique characters
- Time: O(n), Space: O(1)
Medium Level
-
- Find all anagrams of pattern in string
- Time: O(n), Space: O(1)
-
- Check if string contains permutation of pattern
- Time: O(n), Space: O(1)
-
Maximum Sum of Distinct Subarrays With Length K
- Find maximum sum of k-length subarray with distinct elements
- Time: O(n), Space: O(k)
-
Maximum Number of Vowels in a Substring of Given Length
- Find maximum number of vowels in k-length substring
- Time: O(n), Space: O(1)
Hard Level
-
- Find maximum element in each k-sized window
- Time: O(n), Space: O(k)
-
- Find median in each k-sized window
- Time: O(n log k), Space: O(k)
-
Maximum Sum of 3 Non-Overlapping Subarrays
- Find three non-overlapping subarrays with maximum sum
- Time: O(n), Space: O(n)
Tips for Fixed Size Sliding Window Problems
- Initialize the first window correctly
- Maintain window state efficiently while sliding
- Handle edge cases: empty input, k > array length
- Consider using auxiliary data structures for complex conditions
- Optimize space usage by reusing variables when possible
Happy Coding! 🚀